Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis.
نویسندگان
چکیده
Our increasing dependence on a small number of agricultural crops, such as corn, is leading to reductions in agricultural biodiversity. Reductions in the number of crops in rotation or the replacement of rotations by monocultures are responsible for this loss of biodiversity. The belowground implications of simplifying agricultural plant communities remain unresolved; however, agroecosystem sustainability will be severely compromised if reductions in biodiversity reduce soil C and N concentrations, alter microbial communities, and degrade soil ecosystem functions as reported in natural communities. We conducted a meta-analysis of 122 studies to examine crop rotation effects on total soil C and N concentrations, and the faster cycling microbial biomass C and N pools that play key roles in soil nutrient cycling and physical processes such as aggregate formation. We specifically examined how rotation crop type and management practices influence C and N dynamics in different climates and soil types. We found that adding one or more crops in rotation to a monoculture increased total soil C by 3.6% and total N by 5.3%, but when rotations included a cover crop (i.e., crops that are not harvested but produced to enrich the soil and capture inorganic N), total C increased by 8.5% and total N 12.8%. Rotations substantially increased the soil microbial biomass C (20.7%) and N (26.1%) pools, and these overwhelming effects on microbial biomass were not moderated by crop type or management practices. Crop rotations, especially those that include cover crops, sustain soil quality and productivity by enhancing soil C, N, and microbial biomass, making them a cornerstone for sustainable agroecosystems.
منابع مشابه
Crop rotation complexity regulates the decomposition of high and low quality residues
While many ecosystem processes depend on biodiversity, the relationships between agricultural plant diversity and soil carbon (C) and nitrogen (N) dynamics remains controversial. Our objective was to examine how temporal plant diversity (i.e. crop rotation) influences residue decomposition, a key ecosystem function that regulates nutrient cycling, greenhouse gas emissions, and soil organic matt...
متن کاملEleven years of crop diversification alters decomposition dynamics of litter mixtures incubated with soil
Agricultural crop rotations have been shown to increase soil carbon (C), nitrogen (N), and microbial biomass. The mechanisms behind these increases remain unclear, but may be linked to the diversity of crop residue inputs to soil organic matter (SOM). We used a residue mixture incubation to examine how variation in longterm diversity of plant communities in agroecosystems influences decompositi...
متن کاملEnhancing Soil Quality and Plant Health Through Suppressive Organic Amendments
The practice of adding organic amendments to crop soils is undergoing resurgence as an efficient way to restore soil organic matter content and to improve soil quality. The quantity and quality of the organic matter inputs affect soil physicochemical properties and soil microbiota, influencing different parameters such as microbial biomass and diversity, community structure and microbial activi...
متن کاملCrop Rotation Effects on Soil Microbial Populations, Biomass and Diversity under Wheat in a Brown Loam
The inclusion of grain and green manure (GM) or forage legumes in cereal production systems on the Prairies does improve the fertility and quality of soils (Wright 1990; Campbell et al. 1992; Green and Biederbeck 1995; Biederbeck et al. 1998). Legume-based cropping systems can also reduce nitrogen losses and greatly increase the proportion of crop residuecarbon that is sequestered in stable soi...
متن کاملOrganic farming enhances soil microbial abundance and activity—A meta-analysis and meta-regression
Population growth and climate change challenge our food and farming systems and provide arguments for an increased intensification of agriculture. A promising option is eco-functional intensification through organic farming, an approach based on using and enhancing internal natural resources and processes to secure and improve agricultural productivity, while minimizing negative environmental i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ecological applications : a publication of the Ecological Society of America
دوره 24 3 شماره
صفحات -
تاریخ انتشار 2014